Bounds for the product of modified Bessel functions

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a Product of Modified Bessel Functions

Let Iν and Kν denote the modified Bessel functions of the first and second kinds of order ν. In this note we prove that the monotonicity of u → Iν(u)Kν(u) on (0,∞) for all ν ≥ −1/2 is an almost immediate consequence of the corresponding Turán type inequalities for the modified Bessel functions of the first and second kinds of order ν. Moreover, we show that the function u → Iν(u)Kν(u) is strict...

متن کامل

Uniform Bounds for Bessel Functions

For ν > −1/2 and x real we shall establish explicit bounds for the Bessel function Jν(x) which are uniform in x and ν. This work and the recent result of L. J. Landau [7] provide relatively sharp inequalities for all real x.

متن کامل

Representation of the Modified Bessel Functions ∗

Some power series representations of the modified Bessel functions (McDonald functions Kα) are derived using the little known formalism of fractional derivatives. The resulting summation formulae are believed to be new. 1 Fractional derivatives There are several non-trivial examples in mathematics when some quantity, originally defined as integer, can radically extend its original range and ass...

متن کامل

Some Inequalities for Modified Bessel Functions

We denote by Iν and Kν the Bessel functions of the first and third kind, respectively. Motivated by the relevance of the function wν t t Iν−1 t /Iν t , t > 0, in many contexts of applied mathematics and, in particular, in some elasticity problems Simpson and Spector 1984 , we establish new inequalities for Iν t /Iν−1 t . The results are based on the recurrence relations for Iν and Iν−1 and the ...

متن کامل

Lower Bounds for the Zeros of Bessel Functions

Let jp „ denote the nth positive zero of J , p > 0. Then / ■■> 7\'/2 Jp.n > Oln + P) ■ We begin by considering the eigenvalue problem (1) -(•*/)' + x~y = X2x2p-Xy, X,p>0, (2) y(a) =y(\) = 0, 0 < a < 1. For simplicity of notation we will set q = p~x. It is easily verified that the general solution of (1) is y(x) = CxJq(Xqxx/q) + C2Yq(Xqxx'q) and that the eigenvalues are given by Jq(Xq)Yq(Xqax/q)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Aequationes mathematicae

سال: 2016

ISSN: 0001-9054,1420-8903

DOI: 10.1007/s00010-016-0414-2